Letter

¹⁵⁵Gd Mössbauer effect and magnetic properties of GdMn₆Ge₆

F. M. Mulder and R. C. Thiel

Kamerlingh Onnes Laboratory, Leiden University, 2300 RA Leiden (Netherlands)

J. H. V. J. Brabers and F. R. de Boer

Van der Waals-Zeeman Laboratory, University of Amsterdam, 1018 XE Amsterdam (Netherlands)

K. H. J. Buschow

Philips Research Laboratories, 5600 JA Eindhoven (Netherlands)

(Received May 19, 1992)

Abstract

The magnetic properties of GdMn₆Ge₆ have been studied by magnetic measurements and ¹⁵⁵Gd Mössbauer spectroscopy. The Mn sublattice orders ferromagnetically in high magnetic fields and at high temperatures but in low fields and low temperatures there is a tendency to antiferromagnetic ordering. Antiferromagnetic order was also found in YMn₆Ge₆. The electric field gradient derived from the quadrupolar splitting of the ¹⁵⁵Gd Mössbauer spectra is substantially larger than in the isotypic compound GdMn₆Sn₆.

Rare earth compounds of the type RMn₆Sn₆ have been reported recently to possess quite interesting magnetic properties owing to the presence of a magnetic moment on the Mn atoms [1, 2]. The magnetic ordering temperatures are well above room temperature but the magneto-crystalline anisotropy is only of moderate magnitude. ¹⁵⁵Gd Mössbauer spectroscopy, used as a probe of the local electric field gradient, has revealed that this may be due to the relatively small size of the second order crystal field parameter A₂⁰ associated with the crystal field induced rare earth sublattice anisotropy [2].

In the present study we have focussed our attention on the properties of the compound GdMn₆Ge₆. Several compounds of the series RMn₆Ge₆ were prepared by us and found to crystallize in the same structure type as adopted by RMn₆Sn₆. This structure type (HfFe₆Ge₆) is relatively simple and comprises only a single R site and a single 3d site, the coordination of the R sites being similar but not identical to that found in the CeCo₃B₂structure type [3].

The GdMn₆Ge₆ sample was prepared by arc melting starting materials with purities of at least 99.9%. After

arc melting, the sample was wrapped in Ta foil, sealed in an evacuated quartz tube and then vacuum annealed at 800° C for about 4 weeks. X-ray diffraction showed the sample to be approximately single phase after annealing. The lattice constants are a=0.52371 nm and c=0.81828 nm. In order to determine the easy magnetization direction in GdMn₆Ge₆ X-ray diagrams were also taken from magnetically aligned powder. Conclusive evidence was obtained that the easy magnetization direction in GdMn₆Ge₆ is perpendicular to the c axis.

Results of magnetic measurements, made on a SQUID magnetometer in a field of 0.5 T, are shown in Fig. 1. Magnetic ordering is seen to occur at $T_{\rm c}=490$ K. In the range between 200 and 400 K the magnetization reaches a value of about 30 Am² g k⁻¹ (30 emu g⁻¹) which corresponds to about 5 $\mu_{\rm B}$ per formula unit GdMn₆Ge₆. Below about 200 K a dramatic decrease in the magnetization occurs, leading to a magnetic moment of only about 1 $\mu_{\rm B}$ per formula unit at 4.2 K. These results may be compared with those obtained on YMn₆Ge₆. As seen in Fig. 1 this compound gives rise to antiferromagnetic ordering at $T_{\rm N}=485$ K.

The magnetic isotherm of $GdMn_6Ge_6$ at 4.2 K was measured at the Amsterdam high-field installation [4] on fine powder particles that were allowed to orient themselves freely in the applied field. The results are shown in Fig. 2. In the low-field region the magnetization rises very rapidly. Above about 10 T the magnetization varies linearly with the field strength. Extrapolation to H=0 leads to a saturation moment of 5.0 μ_B per formula unit. Under the assumption of antiparallel

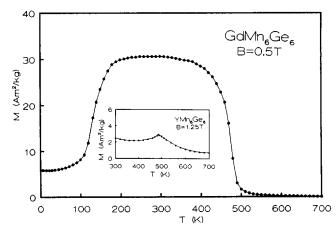


Fig. 1. Temperature dependence of the magnetization in GdMn₆Ge₆ and YMn₆Ge₆ (inset) measured in fields of 0.5 T and 1.25 T respectively.

L30 Letter

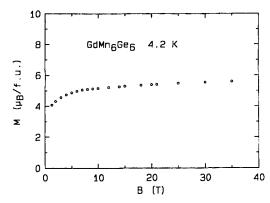


Fig. 2. Field dependence of the magnetization of GdMn₆Ge₆ at 4.2 K.

coupled Gd and Mn sublattice magnetizations the saturation moment of 5.0 $\mu_{\rm B}$ may be interpreted as being the result of an Mn sublattice moment of 12.0 $\mu_{\rm B}$ and a Gd sublattice moment of 7.0 $\mu_{\rm B}$ (free ion value). The shape of the magnetic isotherm suggests that the situation is different in low fields since one would have expected that the magnetization has a linear field dependence in fields much lower than 10 T for ferromagnetic particles able to rotate freely in the sample holder. Most likely the Mn sublattice is no longer ferromagnetic in zero field but rather antiferromagnetic, leaving only a relatively small net Mn sublattice moment induced by the molecular field of the Gd sublattice. As may be seen from Fig. 1 this situation is present only up to about 100 K. The strong rise in the magnetization between 100 and 200 K suggests that with increasing temperature there is a transition from an antiferromagnetic Mn sublattice to a ferromagnetic Mn sublattice. This transition is most likely driven by thermal expansion. This hypothesis is based on the fact that Mn atoms have a tendency to couple antiparallel for small Mn-Mn distances but to couple parallel for sufficiently large Mn-Mn distances. It agrees with preliminary observations on TbMn₆Ge₆ where the corresponding transition occurs at substantially higher temperatures, only slightly below T_c. More experiments are currently being undertaken to study the origin of this interesting behaviour in more detail.

The Mössbauer spectrum of GdMn₆Ge₆ was obtained by means of the 86.5 keV resonance of ¹⁵⁵Gd. The source consisted of neutron-irradiated SmPd₃ prepared with samarium enriched to 98% in ¹⁵⁴Sm. Details of the spectrometer are given elsewhere [5]. The spectrum obtained is shown in Fig. 3.

We analysed the spectrum by means of a least-squares fitting procedure based on the diagonalization of the full nuclear Hamiltonian and used a transmission integral. The independently refined variables consisted of the isomer shift (IS), the effective hyperfine field (H_{eff}) and the quadrupole splitting (QS) (or the electric

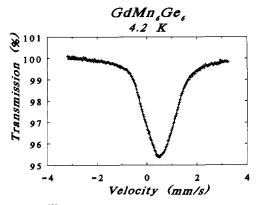


Fig. 3. ¹⁵⁵Gd Mössbauer spectrum of GdMn₆Ge₆ at 4.2 K. The solid curve through the data points represents a fit.

TABLE 1. Hyperfine parameters derived from fitting the ¹⁵⁵Gd Mössbauer spectra at 4.2 K of GdMn₆Ge₆ and GdMn₆Sn₆

Compound	$V_{zz} (10^{21} \text{ V m}^{-2})$	B _{eff} (T)	IS (mm s ⁻¹)	θ (deg)	η
GdMn ₆ Ge ₆ GdMn ₆ Sn ₆			0.49 ± 0.01 0.55 ± 0.001	90 90	0

field gradient tensor element $V_{zz'}$ obtained via the relation QS = $(1/4)eQV_{zz}$ $(3\cos^2\theta - 1)$, where the value $Q = 1.30 \times 10^{-28} \text{ m}^2$ was taken from Tanaka et al. [6]. The fitting procedure has furthermore been performed with the constraint that the angle θ between $H_{\rm eff}$ and the c-axis be 90° as was derived from results obtained previously for the isotypic compound Gd-Mn₆Sn₆. The absorber and source line widths were constrained to 0.25 and 0.36 mm s⁻¹ for the transmission integral. The hyperfine parameters corresponding to the best fit are listed in Table 1, where they can be compared with the hyperfine parameters obtained previously [2] for the isotypic compound GdMn₆Sn₆. It can be seen from Table 1 that the electric field gradient V_{zz} at the nuclear Gd site has increased by more than 60% compared with GdMn₆Sn₆.

The electric field gradient in GdMn₆Sn₆ was discussed extensively in a previous report [2] where a comparison was made between the crystal structures and the expected V_{zz} values in CeCo₃B₂ type structures and HfFe₆Ge₆ type structures. Both structure types have in common that the central minority atom is surrounded in the equatorial plane by a hexagon of six s,p atoms while in the plane below and above the equatorial plane there are hexagons consisting of transition metal atoms. For Gd-based compounds this coordination is able to produce large asphericities of the 6p and 5d on-site valence electrons of Gd which in turn produces a large value of V_{zz} [7, 8]. However, in the HfFe₆Ge₆type structure there are two additional near neighbour s,p atoms along the c direction which have a strongly detrimental influence on the on-site valence electron Letter L31

asphericities of Gd, explaining the comparatively low value of V_{zz} in GdMn₆Sn₆. This detrimental influence on V_{zz} is expected to be larger the lower the electron density at the atomic cell boundaries of the s, p element [9]. Given the fact that the latter quantity is lower for Sn than for Ge [10] one may conclude that the detrimental influence of the two s, p-neighbour atoms in the Gd coordination shell is less severe in GdMn₆Ge₆ than in GdMn₆Sn₆, explaining the higher value of V_{zz} in the former compound compared with the latter. Further investigations are planned to study the correlations between the V_{zz} values found in GdMn₆Ge₆ and GdMn₆Sn₆ and the corresponding rare earth sublattice anisotropies in the series RMn₆Ge₆ and RMn₆Sn₆.

References

 B. Malaman, G. Venturini and B. Roques, Mater. Res. Bull., 23 (1988)1629. 2 M. W. Dirken, R.C. Thiel, J.H.V.J. Brabers, F.R. de Boer and K.H.J. Buschow, J. Alloys Comp., 177 (1991) L11.

- 3 E. Parthé and B. Chabot, in K.A. Gschneidner, Jr. and L. Eyring (eds), Handbook on the Physics and Chemistry of Rare Earths, Vol. 6, North-Holland Amsterdam, 1984, p. 113.
- 4 R. Gersdorf, F.R. de Boer, J.C. Wolfrat, F.A. Muller and R. Roeland, in M. Date (ed.), *High-Field Magnetism*, North-Holland, Amsterdam, 1983, p.127.
- 5 M.W. Dirken, R.C. Thiel, L.J. de Jongh, T.H. Jacobs and K.H.J. Buschow, J. Less-Common Met, 155 (1989) 339.
- 6 Y. Tanaka, O.B. Laubacher, R.M. Stoffen, E.B. Shera, H.D. Wohlfarth and M. v. Hoehn, *Phys. Lett. B*, 108 (1982) 8.
- 7 R. Coehoorn and K.H.J. Buschow, J. Appl. Phys., 69 (1991) 5590.
- 8 K.H.J. Buschow, R. Coehoorn, F.M. Mulder and R.C. Thiel, J. Magn. Magn. Mater., in the press.
- 9 R. Coehoorn, K.H.J. Buschow, M.W. Dirken and R.C. Thiel, Phys. Rev. B, 42 (1990) 4645.
- 10 F.R. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedema and A.K. Niessen in F.R. de Boer and D.G. Pettifor (eds.), Cohesion and Structure, Vol. 1, North-Holland, Amsterdam, 1988